新材料可在室溫下進行“量子翻轉” 有助開發下一代計算新模式
據最新一期英國《自然·通訊》報道,美國密歇根大學開發出一種半導體材料,可在室溫條件下實現從導體到絕緣體的“量子翻轉”,有助于開發新一代量子設備和超高效電子設備。研究人員在只有一個原子厚的二維硫化鉭層中觀察到,支持這種量子翻轉的奇異電子結構以前只能在-37.8℃的超低溫下穩定,現在該新材料可在高達77℃時保持穩定。
密歇根大學材料科學與工程助理教授羅伯特·霍夫登說,奇異的量子特性,比如從導體切換到絕緣體的能力,可能是下一代計算的關鍵,它提供了更多存儲信息的方法和更快的狀態切換。這可能會導致更強大、更節能的設備。
當今的電子產品使用微型電子開關來存儲數據;“開”為1,“關”為0,斷電后數據消失。未來的設備則可使用其他狀態,例如“導體”或“絕緣體”來存儲數字數據,只需要快速的能量點就可在狀態之間切換,而不是穩定的電流。
在過去,這種奇異的行為只在超低溫下的材料中被觀察到,而科學家的最終目標是開發能夠在室溫下按需快速從一種狀態“翻轉”到另一種狀態的材料,這一研究可能是朝這個方向邁出的重要一步。
“先前在超低溫下的研究表明,可以按需一次又一次地進行這種翻轉。”霍夫登說,“這不是這個項目的重點,但事實上,我們甚至能夠在室溫下保持一次翻轉穩定,這開啟了許多令人興奮的可能性。”
從導體到絕緣體的翻轉由一種稱為電荷密度波的現象支持,這是一種在某些條件下自發發生的有序的、晶體狀正負電荷模式。
“之前在硫化鉭的大塊樣品中觀察到電荷密度波,但材料必須處于超冷溫度下,”霍夫登說,“通過將幾個二維層交錯在一起,我們能夠使其更加穩定。”
該團隊首先制造了幾層夾在一起的單原子厚的硫化鉭層樣品。每一層都是一個半導體,處于所謂的八面體狀態,它指的是鉭和硫原子的特定排列。雖然存在一些電荷密度波,但它們過于不穩定和無序,無法產生導體—絕緣體翻轉等奇異行為。
霍夫登團隊通過在無氧環境中加熱樣品,同時在電子顯微鏡下觀察該過程。隨著樣品的加熱,層開始一層一層地切換到棱柱狀態——相同原子的不同排列。
當大多數(但不是全部)層切換到棱柱狀態時,研究人員將樣品冷卻回室溫,發現保持八面體狀態的層顯示出有序而穩定的電荷密度波,并且在高達77℃的溫度下仍能保持這種狀態。此外,這些層已經從半導體轉變為絕緣體。
相關文章:
- 外媒:百度入選2020全球TOP 10量子計算公司
- 云服務器多少錢一臺?
- 一種新的機器學習算法能實現與量子計算鏈接
- 中國量子科技走出實驗室:通信有優勢 計算需追趕
- 首個量子計算全球開發者平臺正式上線 “云上”和“線下”共同服務開發者
- MIT開發Twist編程語言:專門解決量子計算數據糾纏問題
- 新材料可在室溫下進行“量子翻轉” 有助開發下一代計算新模式
- IBM量子計算應用多領域 IBM與加拿大魁北克省政府合作第一座量子計算機
- 研究人員正嘗試實現基于離子阱的量子計算
- 貝索斯參投的量子計算公司D-Wave通過與SPAC公司合并上市
- 我國科學家首次在超冷原子分子混合氣中實現合成 將為實現量子計算打開新的思路
- NEC宣布開始使用量子計算技術演示測試 以提高NEC Fielding的維護部件的交付效率
- 量子計算是什么?
- 量子計算有哪些業務價值?如何幫助企業實現目標?